@ALDDerivedClass @ALDParametrizedClass public class MTBSnakeEnergyCDIB_Gradient extends MTBSnakeEnergyCDImageBased
The energy for a snake C is defined as follows:
GradientFieldCalculator2D
Modifier and Type | Field and Description |
---|---|
private MTBVectorField2D |
gradField |
private MTBImage |
image
The given input image to calculate the external energy from it.
|
private MTBImageDouble |
imageNormalized
Normalized version of input image used in calculations.
|
height, normalizationFactor, normMode, scaleFactor, width
targetEnergyRange
Constructor and Description |
---|
MTBSnakeEnergyCDIB_Gradient()
Constructor to create a new SnakeExternalEnergyGradient object.
|
MTBSnakeEnergyCDIB_Gradient(MTBImage img)
Constructor to create a new SnakeExternalEnergyGradient object.
|
Modifier and Type | Method and Description |
---|---|
Jama.Matrix |
getDerivative_VectorPart(SnakeOptimizerSingleVarCalc opt)
Returns the vector part of this energy for snake optimization.
|
double |
getDerivativeX(double x,
double y)
Get x-derivative of negative absolute gradient value to the power of two
(external energy) at given position using central differences.
|
double |
getDerivativeY(double x,
double y)
Get y-derivative of negative absolute gradient value to the power of two
(external energy) at given position using central differences.
|
double |
getValue(double x,
double y)
Returns the negative absolute gradient value to the power of 2 (the
external energy) at the given position.
|
boolean |
initEnergy(SnakeOptimizerSingle o)
Init routine which is called once before the energy is actually used.
|
void |
normalizeEnergy()
Normalize the external energy in a range [-1.0, 1.0].
|
String |
toString()
Get an identifier string for the energy object.
|
calcEnergy, calcEnergy, getDerivative_MatrixPart, getDerivativeX_norm, getDerivativeY_norm, getScaleFactor, getValue_norm, requiresCounterClockwiseContourSorting, requiresOverlapMask, setScaleFactor, updateStatus
@ALDClassParameter(label="Input Image") private MTBImage image
private MTBImageDouble imageNormalized
private MTBVectorField2D gradField
public MTBSnakeEnergyCDIB_Gradient()
img
- input imagede.unihalle.informatik.Alida.exceptions.ALDOperatorException
de.unihalle.informatik.Alida.exceptions.ALDProcessingDAGException
public MTBSnakeEnergyCDIB_Gradient(MTBImage img)
img
- input imagepublic boolean initEnergy(SnakeOptimizerSingle o)
MTBSnakeEnergyDerivable
In this routine global parameter settings can be handled or other initialization stuff be done. The SnakeOptimizer will call this routine once before the actual use of the energy. If no stuff needs to be done in advance the routine should at least return true.
initEnergy
in interface MTBSnakeEnergyComputable
initEnergy
in interface MTBSnakeEnergyDerivable
initEnergy
in class MTBSnakeEnergyCDImageBased
o
- Calling snake optimizer.public double getValue(double x, double y)
getValue
in class MTBSnakeEnergyCDImageBased
x
- x-coordinate of positiony
- y-coordinate of positionpublic Jama.Matrix getDerivative_VectorPart(SnakeOptimizerSingleVarCalc opt)
MTBSnakeEnergyDerivable
getDerivative_VectorPart
in interface MTBSnakeEnergyDerivable
getDerivative_VectorPart
in class MTBSnakeEnergyCDImageBased
opt
- Calling snake optimizer.public double getDerivativeX(double x, double y)
getDerivativeX
in class MTBSnakeEnergyCDImageBased
x
- x-coordinate of pixel positiony
- y-coordinate of pixel positionpublic double getDerivativeY(double x, double y)
getDerivativeY
in class MTBSnakeEnergyCDImageBased
x
- x-coordinate of pixel positiony
- y-coordinate of pixel positionpublic void normalizeEnergy()
MTBSnakeEnergyCDImageBased
normalizeEnergy
in class MTBSnakeEnergyCDImageBased
public String toString()
MTBSnakeEnergyDerivable
When meta parameters are saved to a file, configuration objects need to be converted to strings. Consequently, each snake energy should be associated with a unique and descriptive string for later reference.
toString
in interface MTBSnakeEnergyComputable
toString
in interface MTBSnakeEnergyDerivable
toString
in class Object
Copyright © 2010–2020 Martin Luther University Halle-Wittenberg, Institute of Computer Science, Pattern Recognition and Bioinformatics. All rights reserved.