T - class type of the multi-states' discrete variablespublic class MultiStateLinTransDistributionIndepGaussians<T extends Copyable<?>> extends AbstractMultiStateTransitionDistributionIndep<T> implements EvaluatableDistribution<AbstractMultiState<T>>, IndependentlyEvaluatableDistribution<AbstractMultiState<T>>, FirstOrderMoment<AbstractMultiState<T>>, SecondOrderCentralMoment<Jama.Matrix[]>
| Modifier and Type | Field and Description |
|---|---|
protected Jama.Matrix[] |
F
state-transition matrix
|
protected GaussianDistribution[] |
gaussian
multivariate gaussian density object for evaluation
|
protected Jama.Matrix[] |
Q
Gaussian process noise covariance matrix
|
condX, factoryX| Constructor and Description |
|---|
MultiStateLinTransDistributionIndepGaussians(Random rand,
Jama.Matrix[] F,
Jama.Matrix[] Q,
AbstractMultiState<T> X,
AbstractMultiStateFactory<T> factoryX) |
MultiStateLinTransDistributionIndepGaussians(Random rand,
Jama.Matrix[] F,
Jama.Matrix[] Q,
MultiStateDistributionIndepGaussians<T> distribX,
AbstractMultiStateFactory<T> factoryX) |
MultiStateLinTransDistributionIndepGaussians(Random rand,
Jama.Matrix F,
Jama.Matrix Q,
AbstractMultiState<T> X,
AbstractMultiStateFactory<T> factoryX) |
MultiStateLinTransDistributionIndepGaussians(Random rand,
Jama.Matrix F,
Jama.Matrix Q,
MultiStateDistributionIndepGaussians<T> distribX,
AbstractMultiStateFactory<T> factoryX) |
| Modifier and Type | Method and Description |
|---|---|
AbstractMultiState<T> |
drawSample()
Generate a new sample from this density.
|
AbstractMultiState<T> |
drawSample(int i,
AbstractMultiState<T> X)
Generate a new sample from this density by drawing only one independent variable for a given realization x.
|
Jama.Matrix[] |
getCovariance() |
AbstractMultiState<T> |
getMean() |
Jama.Matrix[] |
getTransitionMatrices() |
double |
p(AbstractMultiState<T> X)
Evaluate p(X) at location x.
|
double |
p(AbstractMultiState<T> X,
int i)
Evaluate p_i(X) at x_i
|
void |
setCondition(AbstractMultiState<T> X)
Set the conditional variable
|
getConditionprotected Jama.Matrix[] F
protected Jama.Matrix[] Q
protected GaussianDistribution[] gaussian
public MultiStateLinTransDistributionIndepGaussians(Random rand, Jama.Matrix F, Jama.Matrix Q, AbstractMultiState<T> X, AbstractMultiStateFactory<T> factoryX) throws IllegalArgumentException
F - state-transition linear transform matrixQ - Gaussian process noise covariance matrixX - condition statefactoryX - factory to determine multi-target state layoutIllegalArgumentException - if any dimensions of the input objects do not matchpublic MultiStateLinTransDistributionIndepGaussians(Random rand, Jama.Matrix[] F, Jama.Matrix[] Q, AbstractMultiState<T> X, AbstractMultiStateFactory<T> factoryX) throws IllegalArgumentException
F - state-transition linear transform matricesQ - Gaussian process noise covariance matricesX - condition statefactoryX - factory to determine multi-target state layoutIllegalArgumentException - if any dimensions of the input objects do not matchpublic MultiStateLinTransDistributionIndepGaussians(Random rand, Jama.Matrix F, Jama.Matrix Q, MultiStateDistributionIndepGaussians<T> distribX, AbstractMultiStateFactory<T> factoryX) throws IllegalArgumentException
F - state-transition linear transform matrixQ - Gaussian process noise covariance matrixX - condition statefactoryX - factory to determine multi-target state layoutIllegalArgumentException - if any dimensions of the input objects do not matchpublic MultiStateLinTransDistributionIndepGaussians(Random rand, Jama.Matrix[] F, Jama.Matrix[] Q, MultiStateDistributionIndepGaussians<T> distribX, AbstractMultiStateFactory<T> factoryX) throws IllegalArgumentException
F - state-transition linear transform matricesQ - Gaussian process noise covariance matricesX - condition statefactoryX - factory to determine multi-target state layoutIllegalArgumentException - if any dimensions of the input objects do not matchpublic AbstractMultiState<T> drawSample()
SamplingDistributiondrawSample in interface SamplingDistribution<AbstractMultiState<T extends Copyable<?>>>drawSample in class AbstractMultiStateTransitionDistributionIndep<T extends Copyable<?>>public AbstractMultiState<T> drawSample(int i, AbstractMultiState<T> X)
IndependentSamplingDistributiondrawSample in interface IndependentSamplingDistribution<AbstractMultiState<T extends Copyable<?>>>drawSample in class AbstractMultiStateTransitionDistributionIndep<T extends Copyable<?>>i - sample a new realization of the i-th element in xX - realization of a random vector or finite setpublic double p(AbstractMultiState<T> X, int i)
IndependentlyEvaluatableDistributionp in interface IndependentlyEvaluatableDistribution<AbstractMultiState<T extends Copyable<?>>>X - realization of random variable Xi - i-th element in xpublic double p(AbstractMultiState<T> X)
EvaluatableDistributionp in interface EvaluatableDistribution<AbstractMultiState<T extends Copyable<?>>>X - realization of random variable Xpublic AbstractMultiState<T> getMean()
getMean in interface FirstOrderMoment<AbstractMultiState<T extends Copyable<?>>>public Jama.Matrix[] getCovariance()
getCovariance in interface SecondOrderCentralMoment<Jama.Matrix[]>public void setCondition(AbstractMultiState<T> X)
ConditionalDistributionsetCondition in interface ConditionalDistribution<AbstractMultiState<T extends Copyable<?>>>setCondition in class AbstractMultiStateTransitionDistribution<T extends Copyable<?>>X - conditional variablepublic Jama.Matrix[] getTransitionMatrices()
Copyright © 2010–2020 Martin Luther University Halle-Wittenberg, Institute of Computer Science, Pattern Recognition and Bioinformatics. All rights reserved.