T
- class type of the multi-states' discrete variablespublic class MultiStateLinTransDistributionIndepGaussians<T extends Copyable<?>> extends AbstractMultiStateTransitionDistributionIndep<T> implements EvaluatableDistribution<AbstractMultiState<T>>, IndependentlyEvaluatableDistribution<AbstractMultiState<T>>, FirstOrderMoment<AbstractMultiState<T>>, SecondOrderCentralMoment<Jama.Matrix[]>
Modifier and Type | Field and Description |
---|---|
protected Jama.Matrix[] |
F
state-transition matrix
|
protected GaussianDistribution[] |
gaussian
multivariate gaussian density object for evaluation
|
protected Jama.Matrix[] |
Q
Gaussian process noise covariance matrix
|
condX, factoryX
Constructor and Description |
---|
MultiStateLinTransDistributionIndepGaussians(Random rand,
Jama.Matrix[] F,
Jama.Matrix[] Q,
AbstractMultiState<T> X,
AbstractMultiStateFactory<T> factoryX) |
MultiStateLinTransDistributionIndepGaussians(Random rand,
Jama.Matrix[] F,
Jama.Matrix[] Q,
MultiStateDistributionIndepGaussians<T> distribX,
AbstractMultiStateFactory<T> factoryX) |
MultiStateLinTransDistributionIndepGaussians(Random rand,
Jama.Matrix F,
Jama.Matrix Q,
AbstractMultiState<T> X,
AbstractMultiStateFactory<T> factoryX) |
MultiStateLinTransDistributionIndepGaussians(Random rand,
Jama.Matrix F,
Jama.Matrix Q,
MultiStateDistributionIndepGaussians<T> distribX,
AbstractMultiStateFactory<T> factoryX) |
Modifier and Type | Method and Description |
---|---|
AbstractMultiState<T> |
drawSample()
Generate a new sample from this density.
|
AbstractMultiState<T> |
drawSample(int i,
AbstractMultiState<T> X)
Generate a new sample from this density by drawing only one independent variable for a given realization x.
|
Jama.Matrix[] |
getCovariance() |
AbstractMultiState<T> |
getMean() |
Jama.Matrix[] |
getTransitionMatrices() |
double |
p(AbstractMultiState<T> X)
Evaluate p(X) at location x.
|
double |
p(AbstractMultiState<T> X,
int i)
Evaluate p_i(X) at x_i
|
void |
setCondition(AbstractMultiState<T> X)
Set the conditional variable
|
getCondition
protected Jama.Matrix[] F
protected Jama.Matrix[] Q
protected GaussianDistribution[] gaussian
public MultiStateLinTransDistributionIndepGaussians(Random rand, Jama.Matrix F, Jama.Matrix Q, AbstractMultiState<T> X, AbstractMultiStateFactory<T> factoryX) throws IllegalArgumentException
F
- state-transition linear transform matrixQ
- Gaussian process noise covariance matrixX
- condition statefactoryX
- factory to determine multi-target state layoutIllegalArgumentException
- if any dimensions of the input objects do not matchpublic MultiStateLinTransDistributionIndepGaussians(Random rand, Jama.Matrix[] F, Jama.Matrix[] Q, AbstractMultiState<T> X, AbstractMultiStateFactory<T> factoryX) throws IllegalArgumentException
F
- state-transition linear transform matricesQ
- Gaussian process noise covariance matricesX
- condition statefactoryX
- factory to determine multi-target state layoutIllegalArgumentException
- if any dimensions of the input objects do not matchpublic MultiStateLinTransDistributionIndepGaussians(Random rand, Jama.Matrix F, Jama.Matrix Q, MultiStateDistributionIndepGaussians<T> distribX, AbstractMultiStateFactory<T> factoryX) throws IllegalArgumentException
F
- state-transition linear transform matrixQ
- Gaussian process noise covariance matrixX
- condition statefactoryX
- factory to determine multi-target state layoutIllegalArgumentException
- if any dimensions of the input objects do not matchpublic MultiStateLinTransDistributionIndepGaussians(Random rand, Jama.Matrix[] F, Jama.Matrix[] Q, MultiStateDistributionIndepGaussians<T> distribX, AbstractMultiStateFactory<T> factoryX) throws IllegalArgumentException
F
- state-transition linear transform matricesQ
- Gaussian process noise covariance matricesX
- condition statefactoryX
- factory to determine multi-target state layoutIllegalArgumentException
- if any dimensions of the input objects do not matchpublic AbstractMultiState<T> drawSample()
SamplingDistribution
drawSample
in interface SamplingDistribution<AbstractMultiState<T extends Copyable<?>>>
drawSample
in class AbstractMultiStateTransitionDistributionIndep<T extends Copyable<?>>
public AbstractMultiState<T> drawSample(int i, AbstractMultiState<T> X)
IndependentSamplingDistribution
drawSample
in interface IndependentSamplingDistribution<AbstractMultiState<T extends Copyable<?>>>
drawSample
in class AbstractMultiStateTransitionDistributionIndep<T extends Copyable<?>>
i
- sample a new realization of the i-th element in xX
- realization of a random vector or finite setpublic double p(AbstractMultiState<T> X, int i)
IndependentlyEvaluatableDistribution
p
in interface IndependentlyEvaluatableDistribution<AbstractMultiState<T extends Copyable<?>>>
X
- realization of random variable Xi
- i-th element in xpublic double p(AbstractMultiState<T> X)
EvaluatableDistribution
p
in interface EvaluatableDistribution<AbstractMultiState<T extends Copyable<?>>>
X
- realization of random variable Xpublic AbstractMultiState<T> getMean()
getMean
in interface FirstOrderMoment<AbstractMultiState<T extends Copyable<?>>>
public Jama.Matrix[] getCovariance()
getCovariance
in interface SecondOrderCentralMoment<Jama.Matrix[]>
public void setCondition(AbstractMultiState<T> X)
ConditionalDistribution
setCondition
in interface ConditionalDistribution<AbstractMultiState<T extends Copyable<?>>>
setCondition
in class AbstractMultiStateTransitionDistribution<T extends Copyable<?>>
X
- conditional variablepublic Jama.Matrix[] getTransitionMatrices()
Copyright © 2010–2020 Martin Luther University Halle-Wittenberg, Institute of Computer Science, Pattern Recognition and Bioinformatics. All rights reserved.