Package | Description |
---|---|
de.unihalle.informatik.MiToBo.tracking.multitarget.algo | |
de.unihalle.informatik.MiToBo.tracking.multitarget.distributions.impl |
Modifier and Type | Field and Description |
---|---|
protected LinearTransformGaussNoise[] |
MultiTargetIMMFilter.predictors
dynamic models
|
protected LinearTransformGaussNoise |
MultiTargetIMMFilter.projector
observation model
|
Modifier and Type | Method and Description |
---|---|
protected LinearTransformGaussNoise[] |
MultiObservationGenerator.createDynamicModels() |
protected LinearTransformGaussNoise |
MultiObservationGenerator.createObservationModel() |
Modifier and Type | Method and Description |
---|---|
protected MultiState<MotionModelID> |
MultiObservationGenerator.generateNextStates(MultiState<MotionModelID> X,
LinearTransformGaussNoise[] dynamicModels) |
protected MultiState<MotionModelID> |
MultiObservationGenerator.generateObservations(MultiState<MotionModelID> states,
LinearTransformGaussNoise obsModel,
MultiStateFactory<MotionModelID> obsFactory) |
Constructor and Description |
---|
MultiTargetIMMFilter(Vector<GaussMixDistribution> initialStateDistrib,
LinearTransformGaussNoise observationModel,
LinearTransformGaussNoise[] dynamicsModels,
Jama.Matrix markov,
double delta_t,
ExponentialDistribution targetDeathDistrib,
GaussMixDistribution newbornStateDistrib,
Jama.Matrix stateFromObs,
AbstractMultiStateFactory<MotionModelID> factoryX,
AbstractMultiStateFactory<MotionModelID> factoryZ)
Constructor that initializes the internal random generator with seed 1.
|
MultiTargetIMMFilter(Vector<GaussMixDistribution> initialStateDistrib,
LinearTransformGaussNoise observationModel,
LinearTransformGaussNoise[] dynamicsModels,
Jama.Matrix markov,
double delta_t,
ExponentialDistribution targetDeathDistrib,
GaussMixDistribution newbornStateDistrib,
Jama.Matrix stateFromObs,
AbstractMultiStateFactory<MotionModelID> factoryX,
AbstractMultiStateFactory<MotionModelID> factoryZ)
Constructor that initializes the internal random generator with seed 1.
|
MultiTargetIMMFilter(Vector<GaussMixDistribution> initialStateDistrib,
LinearTransformGaussNoise observationModel,
LinearTransformGaussNoise[] dynamicsModels,
Jama.Matrix markov,
double delta_t,
ExponentialDistribution targetDeathDistrib,
GaussMixDistribution newbornStateDistrib,
Jama.Matrix stateFromObs,
AbstractMultiStateFactory<MotionModelID> factoryX,
AbstractMultiStateFactory<MotionModelID> factoryZ,
Random rand)
Constructor.
|
MultiTargetIMMFilter(Vector<GaussMixDistribution> initialStateDistrib,
LinearTransformGaussNoise observationModel,
LinearTransformGaussNoise[] dynamicsModels,
Jama.Matrix markov,
double delta_t,
ExponentialDistribution targetDeathDistrib,
GaussMixDistribution newbornStateDistrib,
Jama.Matrix stateFromObs,
AbstractMultiStateFactory<MotionModelID> factoryX,
AbstractMultiStateFactory<MotionModelID> factoryZ,
Random rand)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
void |
MultiStateDistributionIndepGaussians.predict(LinearTransformGaussNoise predictor) |
void |
MultiStateDistributionIndepGaussians.predictIndep(int i,
LinearTransformGaussNoise predictor) |
void |
MultiStateDistributionIndepGaussians.update(LinearTransformGaussNoise projector,
AbstractMultiState<T> observations) |
void |
MultiStateDistributionIndepGaussians.updateIndep(int i,
int j,
LinearTransformGaussNoise projector,
AbstractMultiState<T> observations)
Update i-th Gaussian component with j-th observation
|
void |
MultiStateDistributionIndepGaussians.updateIndep(int i,
LinearTransformGaussNoise projector,
AbstractMultiState<T> observations) |
Copyright © 2010–2020 Martin Luther University Halle-Wittenberg, Institute of Computer Science, Pattern Recognition and Bioinformatics. All rights reserved.