S
- Type of discrete variables in the multi target observationT
- Type of discrete variables in the multi target statepublic class AssociationDistributionNN<S extends TargetID,T extends TargetID> extends AssociationDistribution<S,T>
P_D
,
a number of observations of newborn targets distributed according to a distribution nu
and a number of clutter observations distributed according to a distribution mu
.
Modifier and Type | Class and Description |
---|---|
static class |
AssociationDistributionNN.AType |
private class |
AssociationDistributionNN.ObsDistance |
private class |
AssociationDistributionNN.ProbTreeData |
Modifier and Type | Field and Description |
---|---|
protected AssociationDistributionNN.ObsDistance[][] |
kNearestObs
Stores for each observation the k-nearest observations that will be
associated after the corresponding observation.
|
protected LogFaculty |
logFac
An object to compute and store log(n!)
|
protected double |
maxDistNeighbors
Maximum distance of neighboring observations
|
protected int |
maxNumNeighbors
Maximum number of neighboring observations
|
chi, lastM, lastN, lastSample, logBinom, logMuValues, logNuValues, logP_C, logP_MN, M_max, minMN, mu, newtargetID, nu, P_D, phi_0, phi_1, psi
assocfactory, clutterdistrib, log_pzc, M, N, newborndistrib, obsdistrib, rand, Z
Constructor and Description |
---|
AssociationDistributionNN(Random rand,
AbstractMultiState<S> Z,
AbstractMultiObservationDistributionIndep<S,T> observationDistrib,
LogProbabilityDensityFunction spatialClutterDistrib,
LogProbabilityDensityFunction spatialNewbornDistrib,
LogProbabilityMassFunction mu,
LogProbabilityMassFunction nu,
double P_D,
int maxNumNeighbors,
double maxDistNeighbors)
Constructor.
|
AssociationDistributionNN(Random rand,
AbstractMultiState<S> Z,
AbstractMultiObservationDistributionIndep<S,T> observationDistrib,
LogProbabilityDensityFunction spatialClutterDistrib,
LogProbabilityDensityFunction spatialNewbornDistrib,
LogProbabilityMassFunction mu,
LogProbabilityMassFunction nu,
double P_D,
int M_max,
int maxNumNeighbors,
double maxDistNeighbors)
Constructor where the maximum number of observations in the time series is specified to avoid some
re-computations.
|
Modifier and Type | Method and Description |
---|---|
private double |
compute_pczAhead(MTBTreeNode pcTree,
Vector<Integer> availableTargets,
Stack<Integer> observations)
Compute probability of all possible associations of neighboring observations including their
likelihood
|
private MTBTreeNode |
compute_qAhead(int m,
int mmax,
int kmin,
int bmin,
double logPc_previous,
MTBTreeNode subtree)
Compute tree of data association prior probabilities depending on previous associations.
|
DataAssociation |
drawSample()
Generate a new sample from this density.
|
DataAssociation |
drawSampleDebug(DataAssociation groundtruth,
OutputStream ostream) |
protected AssociationDistributionNN.ObsDistance[][] |
kNearestObservations(int maxNumNeighbors,
double maxDistNeighbors)
Get the (k) nearest observations for each observation in this.Z, i.e. for each observation z_m all following
observations z_{m:M} are sorted by Euklidean distance and stored in an array.
|
void |
setNewObservations(AbstractMultiState<S> Z,
AbstractMultiObservationDistributionIndep<S,T> observationDistrib) |
letNewbornTargetIDsStartFrom, log_p, p, reset
protected AssociationDistributionNN.ObsDistance[][] kNearestObs
protected LogFaculty logFac
protected int maxNumNeighbors
protected double maxDistNeighbors
public AssociationDistributionNN(Random rand, AbstractMultiState<S> Z, AbstractMultiObservationDistributionIndep<S,T> observationDistrib, LogProbabilityDensityFunction spatialClutterDistrib, LogProbabilityDensityFunction spatialNewbornDistrib, LogProbabilityMassFunction mu, LogProbabilityMassFunction nu, double P_D, int maxNumNeighbors, double maxDistNeighbors)
rand
- random generator for samplingZ
- the current observationsobservationDistrib
- distribution of the observations modelspatialClutterDistrib
- spatial distribution of possible clutter appearancespatialNewbornDistrib
- spatial distribution of possible newborn appearancemu
- distribution of the number of clutter observationsnu
- distribution of the number of observations from newborn targetsP_D
- probability of target detectionmaxNumNeighbors
- maximum number of neighboring observations to be considered for each associationmaxDistNeighbors
- maximum Euklidean distance of neighboring observations to be considered for each associationpublic AssociationDistributionNN(Random rand, AbstractMultiState<S> Z, AbstractMultiObservationDistributionIndep<S,T> observationDistrib, LogProbabilityDensityFunction spatialClutterDistrib, LogProbabilityDensityFunction spatialNewbornDistrib, LogProbabilityMassFunction mu, LogProbabilityMassFunction nu, double P_D, int M_max, int maxNumNeighbors, double maxDistNeighbors)
rand
- random generator for samplingZ
- the current observationsobservationDistrib
- distribution of the observations modelspatialClutterDistrib
- spatial distribution of possible clutter appearancespatialNewbornDistrib
- spatial distribution of possible newborn appearancemu
- distribution of the number of clutter observationsnu
- distribution of the number of observations from newborn targetsP_D
- probability of target detectionmaxNumNeighbors
- maximum number of neighboring observations to be considered for each associationmaxDistNeighbors
- maximum Euklidean distance of neighboring observations to be considered for each associationM_max
- maximum number of observations in the time seriespublic DataAssociation drawSample()
SamplingDistribution
drawSample
in interface SamplingDistribution<DataAssociation>
drawSample
in class AssociationDistribution<S extends TargetID,T extends TargetID>
public DataAssociation drawSampleDebug(DataAssociation groundtruth, OutputStream ostream)
drawSampleDebug
in class AssociationDistribution<S extends TargetID,T extends TargetID>
private double compute_pczAhead(MTBTreeNode pcTree, Vector<Integer> availableTargets, Stack<Integer> observations)
pcTree
- availableTargets
- observations
- private MTBTreeNode compute_qAhead(int m, int mmax, int kmin, int bmin, double logPc_previous, MTBTreeNode subtree)
m
- mmax
- kmin
- bmin
- logPc_previous
- subtree
- public void setNewObservations(AbstractMultiState<S> Z, AbstractMultiObservationDistributionIndep<S,T> observationDistrib)
setNewObservations
in class AssociationDistribution<S extends TargetID,T extends TargetID>
protected AssociationDistributionNN.ObsDistance[][] kNearestObservations(int maxNumNeighbors, double maxDistNeighbors)
k
is larger 0
only the k-nearest observations are returned, if maxDist
is larger 0 only observations in that range
are returned. Both parameters may be specified.Copyright © 2010–2020 Martin Luther University Halle-Wittenberg, Institute of Computer Science, Pattern Recognition and Bioinformatics. All rights reserved.