S
- Type of discrete variables in the multi target observationT
- Type of discrete variables in the multi target statepublic abstract class AbstractMultiObservationDistributionIndep<S extends Copyable<?>,T extends Copyable<?>> extends AbstractMultiObservationDistribution<S,T> implements IndependentlyEvaluatableDistribution<AbstractMultiState<S>>, LogIndependentlyEvaluatableDistribution<AbstractMultiState<S>>, FirstOrderMoment<AbstractMultiState<T>>, SecondOrderCentralMoment<Jama.Matrix[]>
condX, factoryX, factoryZ
Constructor and Description |
---|
AbstractMultiObservationDistributionIndep(AbstractMultiState<T> conditionX,
AbstractMultiStateFactory<T> factoryX,
AbstractMultiStateFactory<S> factoryZ)
Constructor to set the condition conditionX, and the factories of multi state and multi observation variables
|
Modifier and Type | Method and Description |
---|---|
abstract int |
getNumOfIndeps() |
abstract double |
log_p(AbstractMultiState<S> Z)
Evaluate natural logarithm of p(X) at location x. log(P(X=x))
|
abstract double |
log_p(AbstractMultiState<S> Z,
int i)
Evaluate the density independently for observation i in Z conditional on state i in X
|
abstract double |
log_p(AbstractMultiState<S> Z,
int i,
int j)
Evaluate the density independently for observation i in Z conditional on state j in X
|
abstract double |
p(AbstractMultiState<S> Z)
Evaluate p(X) at location x.
|
abstract double |
p(AbstractMultiState<S> Z,
int i)
Evaluate the density independently for observation i in Z conditional on state i in X
|
abstract double |
p(AbstractMultiState<S> Z,
int i,
int j)
Evaluate the density independently for observation i in Z conditional on state j in X
|
getCondition, setCondition
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getMean
getCovariance
public AbstractMultiObservationDistributionIndep(AbstractMultiState<T> conditionX, AbstractMultiStateFactory<T> factoryX, AbstractMultiStateFactory<S> factoryZ)
conditionX
- factoryX
- factoryZ
- public abstract double p(AbstractMultiState<S> Z, int i, int j)
x
- i
- j
- public abstract double p(AbstractMultiState<S> Z, int i)
p
in interface IndependentlyEvaluatableDistribution<AbstractMultiState<S extends Copyable<?>>>
Z
- realization of random variable Xi
- i-th element in xpublic abstract double p(AbstractMultiState<S> Z)
EvaluatableDistribution
p
in interface EvaluatableDistribution<AbstractMultiState<S extends Copyable<?>>>
p
in class AbstractMultiObservationDistribution<S extends Copyable<?>,T extends Copyable<?>>
Z
- realization of random variable Xpublic abstract double log_p(AbstractMultiState<S> Z, int i, int j)
x
- i
- j
- public abstract double log_p(AbstractMultiState<S> Z, int i)
log_p
in interface LogIndependentlyEvaluatableDistribution<AbstractMultiState<S extends Copyable<?>>>
Z
- realization of random variable Xi
- i-th element in xpublic abstract double log_p(AbstractMultiState<S> Z)
LogEvaluatableDistribution
log_p
in interface LogEvaluatableDistribution<AbstractMultiState<S extends Copyable<?>>>
log_p
in class AbstractMultiObservationDistribution<S extends Copyable<?>,T extends Copyable<?>>
Z
- realization of random variable Xpublic abstract int getNumOfIndeps()
Copyright © 2010–2020 Martin Luther University Halle-Wittenberg, Institute of Computer Science, Pattern Recognition and Bioinformatics. All rights reserved.