T
- class type of the observations' and states' discrete variablespublic class MultiObsDistributionIndepGaussMix<T extends Copyable<?>> extends AbstractMultiObservationDistributionIndep<T,T> implements SamplingDistribution<AbstractMultiState<T>>, FirstOrderMoment<AbstractMultiState<T>>, SecondOrderCentralMoment<Jama.Matrix[]>
Modifier and Type | Field and Description |
---|---|
protected Vector<GaussMixDistribution> |
gaussmixtures |
protected Jama.Matrix |
H |
condX, factoryX, factoryZ
Constructor and Description |
---|
MultiObsDistributionIndepGaussMix(Random rand,
Jama.Matrix H,
Vector<GaussMixDistribution> obsDistGaussMixtures,
AbstractMultiState<T> X,
AbstractMultiStateFactory<T> factoryX,
AbstractMultiStateFactory<T> factoryZ) |
Modifier and Type | Method and Description |
---|---|
AbstractMultiState<T> |
drawSample()
Generate a new sample from this density.
|
Jama.Matrix[] |
getCovariance() |
GaussMixDistribution |
getGaussMixture(int i) |
AbstractMultiState<T> |
getMean() |
int |
getNumOfIndeps() |
double |
log_p(AbstractMultiState<T> Z)
Evaluate natural logarithm of p(X) at location x. log(P(X=x))
|
double |
log_p(AbstractMultiState<T> Z,
int i)
Evaluate the density independently for observation i in Z conditional on state i in X
|
double |
log_p(AbstractMultiState<T> Z,
int i,
int j)
Evaluate the density independently for observation i in Z conditional on state j in X
|
double |
p(AbstractMultiState<T> Z)
Evaluate p(X) at location x.
|
double |
p(AbstractMultiState<T> Z,
int i)
Evaluate the density independently for observation i in Z conditional on state i in X
|
double |
p(AbstractMultiState<T> Z,
int i,
int j)
Evaluate the density independently for observation i in Z conditional on state j in X
|
getCondition, setCondition
protected Vector<GaussMixDistribution> gaussmixtures
protected Jama.Matrix H
public MultiObsDistributionIndepGaussMix(Random rand, Jama.Matrix H, Vector<GaussMixDistribution> obsDistGaussMixtures, AbstractMultiState<T> X, AbstractMultiStateFactory<T> factoryX, AbstractMultiStateFactory<T> factoryZ) throws IllegalArgumentException
IllegalArgumentException
public GaussMixDistribution getGaussMixture(int i)
public Jama.Matrix[] getCovariance()
getCovariance
in interface SecondOrderCentralMoment<Jama.Matrix[]>
public AbstractMultiState<T> getMean()
getMean
in interface FirstOrderMoment<AbstractMultiState<T extends Copyable<?>>>
public AbstractMultiState<T> drawSample()
SamplingDistribution
drawSample
in interface SamplingDistribution<AbstractMultiState<T extends Copyable<?>>>
public double p(AbstractMultiState<T> Z, int i, int j)
AbstractMultiObservationDistributionIndep
public double p(AbstractMultiState<T> Z, int i)
AbstractMultiObservationDistributionIndep
p
in interface IndependentlyEvaluatableDistribution<AbstractMultiState<T extends Copyable<?>>>
p
in class AbstractMultiObservationDistributionIndep<T extends Copyable<?>,T extends Copyable<?>>
Z
- realization of random variable Xi
- i-th element in xpublic double p(AbstractMultiState<T> Z)
EvaluatableDistribution
p
in interface EvaluatableDistribution<AbstractMultiState<T extends Copyable<?>>>
p
in class AbstractMultiObservationDistributionIndep<T extends Copyable<?>,T extends Copyable<?>>
Z
- realization of random variable Xpublic double log_p(AbstractMultiState<T> Z)
LogEvaluatableDistribution
log_p
in interface LogEvaluatableDistribution<AbstractMultiState<T extends Copyable<?>>>
log_p
in class AbstractMultiObservationDistributionIndep<T extends Copyable<?>,T extends Copyable<?>>
Z
- realization of random variable Xpublic double log_p(AbstractMultiState<T> Z, int i)
AbstractMultiObservationDistributionIndep
log_p
in interface LogIndependentlyEvaluatableDistribution<AbstractMultiState<T extends Copyable<?>>>
log_p
in class AbstractMultiObservationDistributionIndep<T extends Copyable<?>,T extends Copyable<?>>
Z
- realization of random variable Xi
- i-th element in xpublic double log_p(AbstractMultiState<T> Z, int i, int j)
AbstractMultiObservationDistributionIndep
public int getNumOfIndeps()
getNumOfIndeps
in class AbstractMultiObservationDistributionIndep<T extends Copyable<?>,T extends Copyable<?>>
Copyright © 2010–2020 Martin Luther University Halle-Wittenberg, Institute of Computer Science, Pattern Recognition and Bioinformatics. All rights reserved.