T
- class type of the observations' and states' discrete variablespublic class MultiObsDistributionIndepGaussians<T extends Copyable<?>> extends AbstractMultiObservationDistributionIndep<T,T> implements SamplingDistribution<AbstractMultiState<T>>, FirstOrderMoment<AbstractMultiState<T>>, SecondOrderCentralMoment<Jama.Matrix[]>
Modifier and Type | Field and Description |
---|---|
protected GaussianDistribution[] |
gaussian
multivariate gaussian density object for evaluation
|
protected Jama.Matrix[] |
H
state-to-observation-space linear transform matrix
|
protected Jama.Matrix[] |
R
Gaussian measurement noise covariance matrix
|
condX, factoryX, factoryZ
Modifier and Type | Method and Description |
---|---|
AbstractMultiState<T> |
drawSample()
Generate a new sample from this density.
|
Jama.Matrix[] |
getCovariance() |
AbstractMultiState<T> |
getMean() |
int |
getNumOfIndeps() |
Jama.Matrix[] |
getObservationMatrices() |
double |
log_p(AbstractMultiState<T> Z)
Evaluate natural logarithm of p(X) at location x. log(P(X=x))
|
double |
log_p(AbstractMultiState<T> Z,
int i)
Evaluate the density independently for observation i in Z conditional on state i in X
|
double |
log_p(AbstractMultiState<T> Z,
int i,
int j)
Evaluate the density independently for observation i in Z conditional on state j in X
|
double |
logp(AbstractMultiState<T> Z) |
double |
p(AbstractMultiState<T> Z)
Evaluate p(X) at location x.
|
double |
p(AbstractMultiState<T> Z,
int i)
Evaluate the density independently for observation i in Z conditional on state i in X
|
double |
p(AbstractMultiState<T> Z,
int i,
int j)
Evaluate the density independently for observation i in Z conditional on state j in X
|
void |
setCondition(AbstractMultiState<T> X)
Set the conditional variable
|
getCondition
protected Jama.Matrix[] H
protected Jama.Matrix[] R
protected GaussianDistribution[] gaussian
public MultiObsDistributionIndepGaussians(Random rand, Jama.Matrix H, Jama.Matrix R, AbstractMultiState<T> X, AbstractMultiStateFactory<T> factoryX, AbstractMultiStateFactory<T> factoryZ) throws IllegalArgumentException
H
- state-to-observation-space linear transform matrixR
- Gaussian noise covariance matrixX
- condition statefactoryX
- factory to determine multi-target state layoutfactoryZ
- factory to determine multi-target observation layoutIllegalArgumentException
- if any dimensions of the input objects do not matchpublic MultiObsDistributionIndepGaussians(Random rand, Jama.Matrix[] H, Jama.Matrix[] R, AbstractMultiState<T> X, AbstractMultiStateFactory<T> factoryX, AbstractMultiStateFactory<T> factoryZ) throws IllegalArgumentException
H
- state-to-observation-space linear transform matricesR
- Gaussian noise covariance matricesX
- condition statefactoryX
- factory to determine multi-target state layoutfactoryZ
- factory to determine multi-target observation layoutIllegalArgumentException
- if any dimensions of the input objects do not matchpublic MultiObsDistributionIndepGaussians(Random rand, Jama.Matrix H, Jama.Matrix R, MultiStateDistributionIndepGaussians<T> distribX, AbstractMultiStateFactory<T> factoryX, AbstractMultiStateFactory<T> factoryZ) throws IllegalArgumentException
H
- state-to-observation-space linear transform matrixR
- Gaussian noise covariance matrixdistribX
- A Gaussian state distributionfactoryX
- factory to determine multi-target state layoutfactoryZ
- factory to determine multi-target observation layoutIllegalArgumentException
- if any dimensions of the input objects do not matchpublic MultiObsDistributionIndepGaussians(Random rand, Jama.Matrix[] H, Jama.Matrix[] R, MultiStateDistributionIndepGaussians<T> distribX, AbstractMultiStateFactory<T> factoryX, AbstractMultiStateFactory<T> factoryZ) throws IllegalArgumentException
H
- state-to-observation-space linear transform matricesR
- Gaussian noise covariance matricesX
- condition statefactoryX
- factory to determine multi-target state layoutfactoryZ
- factory to determine multi-target observation layoutIllegalArgumentException
- if any dimensions of the input objects do not matchpublic MultiObsDistributionIndepGaussians(Random rand, Jama.Matrix H, Jama.Matrix R, MultiStateLinTransDistributionIndepGaussians<T> transdistribX, AbstractMultiStateFactory<T> factoryX, AbstractMultiStateFactory<T> factoryZ) throws IllegalArgumentException
H
- state-to-observation-space linear transform matrixR
- Gaussian noise covariance matrixtransdistribX
- A Gaussian state distributionfactoryX
- factory to determine multi-target state layoutfactoryZ
- factory to determine multi-target observation layoutIllegalArgumentException
- if any dimensions of the input objects do not matchpublic MultiObsDistributionIndepGaussians(Random rand, Jama.Matrix[] H, Jama.Matrix[] R, MultiStateLinTransDistributionIndepGaussians<T> transdistribX, AbstractMultiStateFactory<T> factoryX, AbstractMultiStateFactory<T> factoryZ) throws IllegalArgumentException
H
- state-to-observation-space linear transform matricesR
- Gaussian noise covariance matricesX
- condition statefactoryX
- factory to determine multi-target state layoutfactoryZ
- factory to determine multi-target observation layoutIllegalArgumentException
- if any dimensions of the input objects do not matchpublic double logp(AbstractMultiState<T> Z) throws IllegalArgumentException
IllegalArgumentException
public double p(AbstractMultiState<T> Z) throws IllegalArgumentException
EvaluatableDistribution
p
in interface EvaluatableDistribution<AbstractMultiState<T extends Copyable<?>>>
p
in class AbstractMultiObservationDistributionIndep<T extends Copyable<?>,T extends Copyable<?>>
Z
- realization of random variable XIllegalArgumentException
public double p(AbstractMultiState<T> Z, int i)
AbstractMultiObservationDistributionIndep
p
in interface IndependentlyEvaluatableDistribution<AbstractMultiState<T extends Copyable<?>>>
p
in class AbstractMultiObservationDistributionIndep<T extends Copyable<?>,T extends Copyable<?>>
Z
- realization of random variable Xi
- i-th element in xpublic double p(AbstractMultiState<T> Z, int i, int j)
AbstractMultiObservationDistributionIndep
public double log_p(AbstractMultiState<T> Z)
LogEvaluatableDistribution
log_p
in interface LogEvaluatableDistribution<AbstractMultiState<T extends Copyable<?>>>
log_p
in class AbstractMultiObservationDistributionIndep<T extends Copyable<?>,T extends Copyable<?>>
Z
- realization of random variable Xpublic double log_p(AbstractMultiState<T> Z, int i)
AbstractMultiObservationDistributionIndep
log_p
in interface LogIndependentlyEvaluatableDistribution<AbstractMultiState<T extends Copyable<?>>>
log_p
in class AbstractMultiObservationDistributionIndep<T extends Copyable<?>,T extends Copyable<?>>
Z
- realization of random variable Xi
- i-th element in xpublic double log_p(AbstractMultiState<T> Z, int i, int j)
AbstractMultiObservationDistributionIndep
public AbstractMultiState<T> getMean()
getMean
in interface FirstOrderMoment<AbstractMultiState<T extends Copyable<?>>>
public AbstractMultiState<T> drawSample()
SamplingDistribution
drawSample
in interface SamplingDistribution<AbstractMultiState<T extends Copyable<?>>>
public Jama.Matrix[] getCovariance()
getCovariance
in interface SecondOrderCentralMoment<Jama.Matrix[]>
public void setCondition(AbstractMultiState<T> X)
ConditionalDistribution
setCondition
in interface ConditionalDistribution<AbstractMultiState<T extends Copyable<?>>>
setCondition
in class AbstractMultiObservationDistribution<T extends Copyable<?>,T extends Copyable<?>>
X
- conditional variablepublic Jama.Matrix[] getObservationMatrices()
public int getNumOfIndeps()
getNumOfIndeps
in class AbstractMultiObservationDistributionIndep<T extends Copyable<?>,T extends Copyable<?>>
Copyright © 2010–2020 Martin Luther University Halle-Wittenberg, Institute of Computer Science, Pattern Recognition and Bioinformatics. All rights reserved.